從進一步提高效率的角度來考慮,往往可以低溫固化的粉末涂料,在保持溫度不變的條件下,大大縮短固化時間,提高生產(chǎn)效率。因此實現(xiàn)粉末涂料的低溫固化,已成為粉末涂料業(yè)界的發(fā)展方向之一。
長期以來,從事粉末涂料以及相關(guān)配套領(lǐng)域如原材料、設(shè)備的同仁們的努力下,在粉末涂料低溫固化方面已取得了不小的進展。現(xiàn)在純環(huán)氧體系砂紋效果產(chǎn)品可以做到130℃/15分鐘固化。平面高光環(huán)氧體系可以做到140℃/15分鐘固化。但環(huán)氧的耐黃變和耐候性能差,不能用于戶外使用。較之環(huán)氧體系耐黃變好些的聚酯/環(huán)氧混合型體系砂紋產(chǎn)品也可以做135℃/15分鐘,平面高光產(chǎn)品可以做到150℃/15分鐘固化(流平稍差)。純聚酯體系砂紋產(chǎn)品可以做到140℃/15分鐘固化,平面高光可以做到160℃/15分鐘固化。但是純聚酯體系平面低光產(chǎn)品目前還是很困難。
實現(xiàn)粉末涂料超低溫固化在技術(shù)上有較大難度。首先,粉末涂料的固化體系是一種低溫潛伏性的固化體系,如果該體系低溫反應(yīng)活性較高,勢必影響到粉末制粉擠出與儲存穩(wěn)定性,另一方面粉末涂料所采用的樹脂與固化劑均是較高軟化點的固體,在低溫下熔融粘度較高,在低溫固化時,涂膜難以流平,影響表面效果。如果采用軟化點較低的樹脂與固化劑雖可降低熔融粘度,但粉末的儲存穩(wěn)定性變差,需要低溫冷藏保存,給使用帶來諸多不便。因此,尋求一種能適合粉末儲存既有較高的軟化點又有合適的反應(yīng)活性的樹脂與固化劑是制備低溫固化粉末涂料的關(guān)鍵。
低溫固化粉末涂料發(fā)展方向
要降低粉末涂料的固化溫度,以下從主體樹脂、固化劑、催化劑、紅外光固化、紫外光固化、噴霧干燥法制造粉末涂料制造粉末涂料和自由基反應(yīng)固化方面來進行討論。
粉末涂料不管是熱塑性或是熱固性,成膜溫度均在180-200℃左右,固化時間長(10-20min),這限制了它只能用于金屬等耐熱基材,并且費時,相對能耗較大。每降低10℃固化溫度大約節(jié)能10%,為節(jié)約能源降低成本,擴大粉末涂料的涂裝范圍,更好地與溶劑型涂裝線接軌,粉末涂料須向低溫固化型方向發(fā)展。可以通過降低樹脂本身地熔融溫度、粘度、軟化點、增加樹脂的官能團提高交聯(lián)度、加入適當(dāng)助劑、應(yīng)用適當(dāng)?shù)拇呋瘎┑榷喾N手段來實現(xiàn)粉末涂料的低溫固化。降低粉末涂料的固化溫度,不僅可以加快自動生產(chǎn)線的生產(chǎn)速度和提高生產(chǎn)效率,節(jié)約能源,而且使粉末涂料的應(yīng)用范圍大大的增加。
決定粉末涂料性能的關(guān)鍵是基體樹脂,為實現(xiàn)低溫固化的粉末涂料,現(xiàn)已開發(fā)出不飽和聚酯型、不飽和丙烯酸酯樹脂型、聚氨酯丙烯酸酯樹脂型、乙烯基醚樹脂型等。湛新(Allnex)和帝斯曼(DSM)都有相應(yīng)產(chǎn)品。不飽和樹脂是UV固化或自由基熱固化粉末涂料的主要成膜物質(zhì),是決定涂料性質(zhì)和涂膜性能的主要成分。為實現(xiàn)低溫固化,一方面要求樹脂能賦予粉末良好的儲存穩(wěn)定性,粉末須在40℃條件下能儲存3~6月而不結(jié)塊;另一方面所用原材料須在較低溫度(如100℃或更低)下具有較低的熔融粘度以保證涂料在固化過程中具有良好的流動性。這就要求所選用樹脂的玻璃化溫度(Tg)應(yīng)該在50~70℃(至少在40℃以上),平均分子量為1000~4000,并且分子量分布要窄。要得到這樣的樹脂并非易事,Tg高于50℃的樹脂熔化難以控制,因為C=C雙鍵在80℃即可開始聚合,而80℃以下則其粘度太高而難以處理。降低樹脂熔融溫度的常用方法是合成半結(jié)晶樹脂、加入結(jié)晶化合物或無定形低聚物。通過高分子結(jié)構(gòu)設(shè)計,合成樹枝狀及超支化半結(jié)晶聚合物制備低溫固化不飽和樹脂也是一種可行的方法。
從物理化學(xué)角度來考慮化學(xué)反應(yīng)的速率可以應(yīng)用阿倫尼烏斯(Arrhenius)公式表示,k=Aexp-Ea/RT(指數(shù)式)。k為速率常數(shù),R為摩爾氣體常量,T為熱力學(xué)溫度,Ea為表觀活化能,A為指前因子(也稱頻率因子),也常用其另外一種形式:lnk=lnA-Ea/RT(對數(shù)式)。要提高低溫固化下反應(yīng)速率,可從其化學(xué)反應(yīng)機理來分析??梢钥闯鯡a為表觀活化能是一個很重要的因素,活化能是指化學(xué)反應(yīng)中,由反應(yīng)物分子到達活化分子所需的最小能量?;瘜W(xué)反應(yīng)速率與其活化能的大小密切相關(guān),活化能越低,反應(yīng)速率越快,因此降低活化能會有效地促進反應(yīng)的進行。促進劑通過降低活化能(實際上是通過改變反應(yīng)途徑的方式降低活化能)來促進一些原本很慢的化學(xué)反應(yīng)得以快速進行。
為使促進劑更好的促進化學(xué)反應(yīng),對于和樹脂相容性好、具有較低熔點(80~120℃)的固體化合物,由于擠出就能獲得良好的分散度,可以在制粉時加入熔融共擠;而那些相容性較差,熔點較高的固體或其它液體化合物,習(xí)慣上采用所謂的母體混合物(Masterbatch)法,即預(yù)先把它們加入到熔融的載體(如環(huán)氧樹脂、聚醋樹脂)中進行分子分散。顯然這做對于助劑的混合均勻性是有幫助的。促進劑的選擇依交聯(lián)固化體系的性質(zhì)而定,雙氰胺固化環(huán)氧體系用咪唑、咪唑啉、環(huán)脒、BF3絡(luò)合物加以催化,環(huán)氧/聚酯混合體系和聚酯/TGIC體系則使用咪唑、咪唑啉、季銨、季磷、脒等化合物,聚氨酯(PU)體系使用的是有機錫化合物,如二月桂酸二丁基錫、辛酸錫和二丁基氧化錫等。
咪唑、2-甲基咪唑、2-苯基咪唑啉、2-異丙基咪唑,2-丙基咪唑和少數(shù)含有長鏈取代基團如十一烷基或十七烷基,其主要是作為反應(yīng)的促進劑或催化劑而應(yīng)用,咪唑類固化劑是一類高活性固化劑,在中溫下短時間即可使環(huán)氧樹脂固化,因此其與環(huán)氧樹脂組成的單組分體系貯存期較短,須對其進行化學(xué)改性,在其分子中引入較大的取代基形成具有空間位阻的咪唑類衍生物,或與過渡金屬Cu、Ni、Co、Zn等的無機鹽反應(yīng)生成相應(yīng)的咪唑鹽絡(luò)合物,才能成為在室溫下具有一定貯存期的潛伏性固化劑。國內(nèi)對咪唑類潛伏性固化劑的研究較少,國外市場則相對較多。日本第一工業(yè)制藥株式會社將各種咪唑與甲苯二異氰酸酯(TDI)、異佛爾酮二異氰酸酯(IPDI)、六次甲基二異氰酸酯(HDI)反應(yīng)制成封閉產(chǎn)物,減弱了咪唑環(huán)上胺基的活性,有較長使用期,當(dāng)溫度上升到100℃以上封閉作用解除,咪唑恢復(fù)活性固化環(huán)氧樹脂。
路易斯酸-胺絡(luò)合物是一類有效環(huán)氧樹脂潛伏性固化劑,由BF3、AlCl3、ZnCl2、PF3等路易斯酸與伯胺或仲胺形成絡(luò)合物而成。作為環(huán)氧樹脂的固化劑,這類絡(luò)合物常溫下相當(dāng)穩(wěn)定,而在120℃時則快速固化環(huán)氧樹脂,其中研究最多的是三氟化硼-胺絡(luò)合物。
微膠囊類環(huán)氧樹脂潛伏性固化劑實際上是利用物理方法將室溫雙組分固化劑采用微細的油滴膜包裹,形成微膠囊將固化劑的固化反應(yīng)活性暫時封閉起來,通過加熱、加壓等條件使膠囊破裂,釋放出固化劑,從而使環(huán)氧樹脂固化。微膠囊類環(huán)氧樹脂潛伏性固化劑的成膜劑包括纖維素、明膠、聚乙烯醇、聚酯等,由于制備工藝要求嚴格,膠囊膜的厚度對貯存、運輸和使用會帶來不同程度影響。
節(jié)省時間和空間。
紫外光固化粉末涂料(簡稱UV固化粉末涂料)是一項將傳統(tǒng)粉末涂料和UV固化技術(shù)相結(jié)合的新技術(shù),UV固化粉末涂料的光固化機理有自由基引發(fā)聚合和陽離子引發(fā)聚合兩種,二者各有其優(yōu)缺點。自由基引發(fā)聚合反應(yīng)的優(yōu)點是水對體系無阻聚作用以及固化速度快,缺點是縮皺明顯和氧對反應(yīng)有阻聚作用;陽離子引發(fā)聚合反應(yīng)的優(yōu)點是縮皺輕微和無氧阻聚現(xiàn)象,缺點是水對反應(yīng)有阻聚作用、固化時間長及分子量增長緩慢。固態(tài)雙酚A環(huán)氧樹脂和乙烯基醚樹脂的光聚合可通過陽離子聚合實現(xiàn),但當(dāng)前多數(shù)情況下UV粉末涂料的光固化還是采用自由基聚合,如甲基丙烯酸聚酯體系、不飽和聚酯、聚氨酯丙烯酸酯體系。UV固化粉末涂料的最大特征是工藝上分為兩個明顯的階段,涂層在熔融流平階段不會發(fā)生樹脂的早期固化,從而為涂層充分流平和除氣泡提供充足的時間。采用UV固化可明顯降低加熱和固化過程的溫度(120~140℃),避免了對基材的過分加熱,開辟粉末涂料更廣闊的應(yīng)用領(lǐng)域如木材、塑料、紙張、熱敏合金和含有熱敏零件的金屬元件等方面。但UV光固化粉末涂料的品種有限,是因為:
顏料中有部分有機顏料不耐UV光的直接照射,或者有不透明的著色顏料吸收UV光的特性,使涂膜固化不良;
涂膜的深層不易固化,如被涂物的形狀結(jié)構(gòu)復(fù)雜,不能被UV光直接照射部分以至與照射不均勻。
不飽和樹脂熱固化粉末涂料一般由不飽和樹脂、熱引發(fā)劑、流平劑、填料及顏料等成分組成。這種不飽和樹脂的固化機理是在加熱熔融狀態(tài)時熱引發(fā)劑分解產(chǎn)生自由基,自由基合過程中,增長鏈自由基從其他分子上奪取一個原子而終止成為穩(wěn)定大分子,并使失去原子的分子又成為一個新自由基,再引發(fā)不飽和雙鍵繼續(xù)新的鏈增長,使聚合反應(yīng)繼續(xù)下去,樹脂在自由基作用下進行自交聯(lián)固化反應(yīng)。樹脂中活性雙鍵密度、熱引發(fā)劑分解溫度及用量對粉末涂料的制備及性能均有重要影響,是粉末配方設(shè)計的基礎(chǔ)和關(guān)鍵。
噴霧干燥法粉末涂料是將粉末涂料漿料經(jīng)霧化以后,與熱空氣接觸使水分迅速汽化,得到霧化均勻且霧滴大小分布均勻的粉末涂料。由Ferro公司開發(fā)的超臨界流體法VAMP(Vedoc Advanced Manufacturing Process)的原理是將粉末涂料的各種成份加到混合葉片的高壓反應(yīng)釜中,在釜中充二氧化碳至臨界狀態(tài),超臨界態(tài)二氧化碳使涂料的各種成份流體化并混合至均勻狀態(tài),然后經(jīng)噴嘴噴霧成所要求粒度的產(chǎn)品,該工藝優(yōu)點是不經(jīng)熔融擠出混合步驟,防止膠化,擴大應(yīng)用范圍,可以使用過去難以使用的原材料。
助劑在粉末涂料配方中用量很小,但其作用卻是不可忽視,常用的助劑有流平劑、脫氣劑、消光劑、蠟粉、邊角覆蓋改性劑等。這些助劑通常須穩(wěn)定存留在粉末涂料中才能發(fā)揮其應(yīng)有的功能,因此使用的助劑要與環(huán)氧、聚酯、丙烯酸等樹脂有良好的相容性。
在制備低溫固化粉末涂料時流平劑的主要作用是降低粉末涂料的熔融表面張力,使涂料在固化成膜前迅速得以流平,避免橘皮和縮孔等表面缺陷的產(chǎn)生,因此為使少量流平劑充分發(fā)揮作用,配方中的流平劑必須充分均勻分散,預(yù)先分散到樹脂載體中的流平劑分散效果更好,更有利于其在低溫熔融固化過程中發(fā)揮作用。
選用脫氣劑如安息香和蠟粉目的是減少或消除氣泡,在低溫固化過程中能迅速將氣泡從涂層中脫出,防止涂層出現(xiàn)如針孔表觀缺陷,合理的脫氣劑篩選非常重要,低熔點或低粘度脫氣助劑更有利于氣泡從涂層中脫出。
常規(guī)消光劑在低溫固化粉末涂料配方中不起作用或消光效果不明顯,且消光效果穩(wěn)定性差,消光劑的合理篩選或者能在低溫下消光的助劑還需進一步的開發(fā)研究。
低溫固化粉末涂料助劑在配方設(shè)計時,由于生產(chǎn)工藝條件較苛刻如低溫擠出、高速剪切等情況,助劑的選擇需對生產(chǎn)工藝具有適應(yīng)性如低溫擠出膠化導(dǎo)致配方失敗。
長期以來,從事粉末涂料以及相關(guān)配套領(lǐng)域如原材料、設(shè)備的同仁們的努力下,在粉末涂料低溫固化方面已取得了不小的進展。現(xiàn)在純環(huán)氧體系砂紋效果產(chǎn)品可以做到130℃/15分鐘固化。平面高光環(huán)氧體系可以做到140℃/15分鐘固化。但環(huán)氧的耐黃變和耐候性能差,不能用于戶外使用。較之環(huán)氧體系耐黃變好些的聚酯/環(huán)氧混合型體系砂紋產(chǎn)品也可以做135℃/15分鐘,平面高光產(chǎn)品可以做到150℃/15分鐘固化(流平稍差)。純聚酯體系砂紋產(chǎn)品可以做到140℃/15分鐘固化,平面高光可以做到160℃/15分鐘固化。但是純聚酯體系平面低光產(chǎn)品目前還是很困難。
實現(xiàn)粉末涂料超低溫固化在技術(shù)上有較大難度。首先,粉末涂料的固化體系是一種低溫潛伏性的固化體系,如果該體系低溫反應(yīng)活性較高,勢必影響到粉末制粉擠出與儲存穩(wěn)定性,另一方面粉末涂料所采用的樹脂與固化劑均是較高軟化點的固體,在低溫下熔融粘度較高,在低溫固化時,涂膜難以流平,影響表面效果。如果采用軟化點較低的樹脂與固化劑雖可降低熔融粘度,但粉末的儲存穩(wěn)定性變差,需要低溫冷藏保存,給使用帶來諸多不便。因此,尋求一種能適合粉末儲存既有較高的軟化點又有合適的反應(yīng)活性的樹脂與固化劑是制備低溫固化粉末涂料的關(guān)鍵。
低溫固化粉末涂料發(fā)展方向
要降低粉末涂料的固化溫度,以下從主體樹脂、固化劑、催化劑、紅外光固化、紫外光固化、噴霧干燥法制造粉末涂料制造粉末涂料和自由基反應(yīng)固化方面來進行討論。
粉末涂料不管是熱塑性或是熱固性,成膜溫度均在180-200℃左右,固化時間長(10-20min),這限制了它只能用于金屬等耐熱基材,并且費時,相對能耗較大。每降低10℃固化溫度大約節(jié)能10%,為節(jié)約能源降低成本,擴大粉末涂料的涂裝范圍,更好地與溶劑型涂裝線接軌,粉末涂料須向低溫固化型方向發(fā)展。可以通過降低樹脂本身地熔融溫度、粘度、軟化點、增加樹脂的官能團提高交聯(lián)度、加入適當(dāng)助劑、應(yīng)用適當(dāng)?shù)拇呋瘎┑榷喾N手段來實現(xiàn)粉末涂料的低溫固化。降低粉末涂料的固化溫度,不僅可以加快自動生產(chǎn)線的生產(chǎn)速度和提高生產(chǎn)效率,節(jié)約能源,而且使粉末涂料的應(yīng)用范圍大大的增加。
決定粉末涂料性能的關(guān)鍵是基體樹脂,為實現(xiàn)低溫固化的粉末涂料,現(xiàn)已開發(fā)出不飽和聚酯型、不飽和丙烯酸酯樹脂型、聚氨酯丙烯酸酯樹脂型、乙烯基醚樹脂型等。湛新(Allnex)和帝斯曼(DSM)都有相應(yīng)產(chǎn)品。不飽和樹脂是UV固化或自由基熱固化粉末涂料的主要成膜物質(zhì),是決定涂料性質(zhì)和涂膜性能的主要成分。為實現(xiàn)低溫固化,一方面要求樹脂能賦予粉末良好的儲存穩(wěn)定性,粉末須在40℃條件下能儲存3~6月而不結(jié)塊;另一方面所用原材料須在較低溫度(如100℃或更低)下具有較低的熔融粘度以保證涂料在固化過程中具有良好的流動性。這就要求所選用樹脂的玻璃化溫度(Tg)應(yīng)該在50~70℃(至少在40℃以上),平均分子量為1000~4000,并且分子量分布要窄。要得到這樣的樹脂并非易事,Tg高于50℃的樹脂熔化難以控制,因為C=C雙鍵在80℃即可開始聚合,而80℃以下則其粘度太高而難以處理。降低樹脂熔融溫度的常用方法是合成半結(jié)晶樹脂、加入結(jié)晶化合物或無定形低聚物。通過高分子結(jié)構(gòu)設(shè)計,合成樹枝狀及超支化半結(jié)晶聚合物制備低溫固化不飽和樹脂也是一種可行的方法。
從物理化學(xué)角度來考慮化學(xué)反應(yīng)的速率可以應(yīng)用阿倫尼烏斯(Arrhenius)公式表示,k=Aexp-Ea/RT(指數(shù)式)。k為速率常數(shù),R為摩爾氣體常量,T為熱力學(xué)溫度,Ea為表觀活化能,A為指前因子(也稱頻率因子),也常用其另外一種形式:lnk=lnA-Ea/RT(對數(shù)式)。要提高低溫固化下反應(yīng)速率,可從其化學(xué)反應(yīng)機理來分析??梢钥闯鯡a為表觀活化能是一個很重要的因素,活化能是指化學(xué)反應(yīng)中,由反應(yīng)物分子到達活化分子所需的最小能量?;瘜W(xué)反應(yīng)速率與其活化能的大小密切相關(guān),活化能越低,反應(yīng)速率越快,因此降低活化能會有效地促進反應(yīng)的進行。促進劑通過降低活化能(實際上是通過改變反應(yīng)途徑的方式降低活化能)來促進一些原本很慢的化學(xué)反應(yīng)得以快速進行。
為使促進劑更好的促進化學(xué)反應(yīng),對于和樹脂相容性好、具有較低熔點(80~120℃)的固體化合物,由于擠出就能獲得良好的分散度,可以在制粉時加入熔融共擠;而那些相容性較差,熔點較高的固體或其它液體化合物,習(xí)慣上采用所謂的母體混合物(Masterbatch)法,即預(yù)先把它們加入到熔融的載體(如環(huán)氧樹脂、聚醋樹脂)中進行分子分散。顯然這做對于助劑的混合均勻性是有幫助的。促進劑的選擇依交聯(lián)固化體系的性質(zhì)而定,雙氰胺固化環(huán)氧體系用咪唑、咪唑啉、環(huán)脒、BF3絡(luò)合物加以催化,環(huán)氧/聚酯混合體系和聚酯/TGIC體系則使用咪唑、咪唑啉、季銨、季磷、脒等化合物,聚氨酯(PU)體系使用的是有機錫化合物,如二月桂酸二丁基錫、辛酸錫和二丁基氧化錫等。
咪唑、2-甲基咪唑、2-苯基咪唑啉、2-異丙基咪唑,2-丙基咪唑和少數(shù)含有長鏈取代基團如十一烷基或十七烷基,其主要是作為反應(yīng)的促進劑或催化劑而應(yīng)用,咪唑類固化劑是一類高活性固化劑,在中溫下短時間即可使環(huán)氧樹脂固化,因此其與環(huán)氧樹脂組成的單組分體系貯存期較短,須對其進行化學(xué)改性,在其分子中引入較大的取代基形成具有空間位阻的咪唑類衍生物,或與過渡金屬Cu、Ni、Co、Zn等的無機鹽反應(yīng)生成相應(yīng)的咪唑鹽絡(luò)合物,才能成為在室溫下具有一定貯存期的潛伏性固化劑。國內(nèi)對咪唑類潛伏性固化劑的研究較少,國外市場則相對較多。日本第一工業(yè)制藥株式會社將各種咪唑與甲苯二異氰酸酯(TDI)、異佛爾酮二異氰酸酯(IPDI)、六次甲基二異氰酸酯(HDI)反應(yīng)制成封閉產(chǎn)物,減弱了咪唑環(huán)上胺基的活性,有較長使用期,當(dāng)溫度上升到100℃以上封閉作用解除,咪唑恢復(fù)活性固化環(huán)氧樹脂。
路易斯酸-胺絡(luò)合物是一類有效環(huán)氧樹脂潛伏性固化劑,由BF3、AlCl3、ZnCl2、PF3等路易斯酸與伯胺或仲胺形成絡(luò)合物而成。作為環(huán)氧樹脂的固化劑,這類絡(luò)合物常溫下相當(dāng)穩(wěn)定,而在120℃時則快速固化環(huán)氧樹脂,其中研究最多的是三氟化硼-胺絡(luò)合物。
微膠囊類環(huán)氧樹脂潛伏性固化劑實際上是利用物理方法將室溫雙組分固化劑采用微細的油滴膜包裹,形成微膠囊將固化劑的固化反應(yīng)活性暫時封閉起來,通過加熱、加壓等條件使膠囊破裂,釋放出固化劑,從而使環(huán)氧樹脂固化。微膠囊類環(huán)氧樹脂潛伏性固化劑的成膜劑包括纖維素、明膠、聚乙烯醇、聚酯等,由于制備工藝要求嚴格,膠囊膜的厚度對貯存、運輸和使用會帶來不同程度影響。
節(jié)省時間和空間。
紫外光固化粉末涂料(簡稱UV固化粉末涂料)是一項將傳統(tǒng)粉末涂料和UV固化技術(shù)相結(jié)合的新技術(shù),UV固化粉末涂料的光固化機理有自由基引發(fā)聚合和陽離子引發(fā)聚合兩種,二者各有其優(yōu)缺點。自由基引發(fā)聚合反應(yīng)的優(yōu)點是水對體系無阻聚作用以及固化速度快,缺點是縮皺明顯和氧對反應(yīng)有阻聚作用;陽離子引發(fā)聚合反應(yīng)的優(yōu)點是縮皺輕微和無氧阻聚現(xiàn)象,缺點是水對反應(yīng)有阻聚作用、固化時間長及分子量增長緩慢。固態(tài)雙酚A環(huán)氧樹脂和乙烯基醚樹脂的光聚合可通過陽離子聚合實現(xiàn),但當(dāng)前多數(shù)情況下UV粉末涂料的光固化還是采用自由基聚合,如甲基丙烯酸聚酯體系、不飽和聚酯、聚氨酯丙烯酸酯體系。UV固化粉末涂料的最大特征是工藝上分為兩個明顯的階段,涂層在熔融流平階段不會發(fā)生樹脂的早期固化,從而為涂層充分流平和除氣泡提供充足的時間。采用UV固化可明顯降低加熱和固化過程的溫度(120~140℃),避免了對基材的過分加熱,開辟粉末涂料更廣闊的應(yīng)用領(lǐng)域如木材、塑料、紙張、熱敏合金和含有熱敏零件的金屬元件等方面。但UV光固化粉末涂料的品種有限,是因為:
顏料中有部分有機顏料不耐UV光的直接照射,或者有不透明的著色顏料吸收UV光的特性,使涂膜固化不良;
涂膜的深層不易固化,如被涂物的形狀結(jié)構(gòu)復(fù)雜,不能被UV光直接照射部分以至與照射不均勻。
不飽和樹脂熱固化粉末涂料一般由不飽和樹脂、熱引發(fā)劑、流平劑、填料及顏料等成分組成。這種不飽和樹脂的固化機理是在加熱熔融狀態(tài)時熱引發(fā)劑分解產(chǎn)生自由基,自由基合過程中,增長鏈自由基從其他分子上奪取一個原子而終止成為穩(wěn)定大分子,并使失去原子的分子又成為一個新自由基,再引發(fā)不飽和雙鍵繼續(xù)新的鏈增長,使聚合反應(yīng)繼續(xù)下去,樹脂在自由基作用下進行自交聯(lián)固化反應(yīng)。樹脂中活性雙鍵密度、熱引發(fā)劑分解溫度及用量對粉末涂料的制備及性能均有重要影響,是粉末配方設(shè)計的基礎(chǔ)和關(guān)鍵。
噴霧干燥法粉末涂料是將粉末涂料漿料經(jīng)霧化以后,與熱空氣接觸使水分迅速汽化,得到霧化均勻且霧滴大小分布均勻的粉末涂料。由Ferro公司開發(fā)的超臨界流體法VAMP(Vedoc Advanced Manufacturing Process)的原理是將粉末涂料的各種成份加到混合葉片的高壓反應(yīng)釜中,在釜中充二氧化碳至臨界狀態(tài),超臨界態(tài)二氧化碳使涂料的各種成份流體化并混合至均勻狀態(tài),然后經(jīng)噴嘴噴霧成所要求粒度的產(chǎn)品,該工藝優(yōu)點是不經(jīng)熔融擠出混合步驟,防止膠化,擴大應(yīng)用范圍,可以使用過去難以使用的原材料。
助劑在粉末涂料配方中用量很小,但其作用卻是不可忽視,常用的助劑有流平劑、脫氣劑、消光劑、蠟粉、邊角覆蓋改性劑等。這些助劑通常須穩(wěn)定存留在粉末涂料中才能發(fā)揮其應(yīng)有的功能,因此使用的助劑要與環(huán)氧、聚酯、丙烯酸等樹脂有良好的相容性。
在制備低溫固化粉末涂料時流平劑的主要作用是降低粉末涂料的熔融表面張力,使涂料在固化成膜前迅速得以流平,避免橘皮和縮孔等表面缺陷的產(chǎn)生,因此為使少量流平劑充分發(fā)揮作用,配方中的流平劑必須充分均勻分散,預(yù)先分散到樹脂載體中的流平劑分散效果更好,更有利于其在低溫熔融固化過程中發(fā)揮作用。
選用脫氣劑如安息香和蠟粉目的是減少或消除氣泡,在低溫固化過程中能迅速將氣泡從涂層中脫出,防止涂層出現(xiàn)如針孔表觀缺陷,合理的脫氣劑篩選非常重要,低熔點或低粘度脫氣助劑更有利于氣泡從涂層中脫出。
常規(guī)消光劑在低溫固化粉末涂料配方中不起作用或消光效果不明顯,且消光效果穩(wěn)定性差,消光劑的合理篩選或者能在低溫下消光的助劑還需進一步的開發(fā)研究。
低溫固化粉末涂料助劑在配方設(shè)計時,由于生產(chǎn)工藝條件較苛刻如低溫擠出、高速剪切等情況,助劑的選擇需對生產(chǎn)工藝具有適應(yīng)性如低溫擠出膠化導(dǎo)致配方失敗。